Collision Attacks Against CAESAR Candidates - Forgery and Key-Recovery Against AEZ and Marble
نویسندگان
چکیده
In this paper we study authenticated encryption algorithms inspired by the OCB mode (Offset Codebook). These algorithms use secret offsets (masks derived from a whitening key) to turn a block cipher into a tweakable block cipher, following the XE or XEX construction. OCB has a security proof up to 2 queries, and a matching forgery attack was described by Ferguson, where the main step of the attack recovers the whitening key. In this work we study recent authenticated encryption algorithms inspired by OCB, such as Marble, AEZ, and COPA. While Ferguson’s attack is not applicable to those algorithms, we show that it is still possible to recover the secret mask with birthday complexity. Recovering the secret mask easily leads to a forgery attack, but it also leads to more devastating attacks, with a key-recovery attack against Marble and AEZ v2 and v3 with birthday complexity. For Marble, this clearly violates the security claims of full n-bit security. For AEZ, this matches the security proof, but we believe it is nonetheless a quite undesirable property that collision attacks allow to recover the master key, and more robust designs would be desirable. Our attack against AEZ is generic and independent of the internal permutation (in particular, it still works with the full AES), but the keyrecovery is specific to the key derivation used in AEZ v2 and v3. Against Marble, the forgery attack is generic, but the key-recovery exploits the structure of the E permutation (4 AES rounds). In particular, we introduce a novel cryptanalytic method to attack 3 AES rounds followed by 3 inverse AES rounds, which can be of independent interest.
منابع مشابه
Universal Forgery and Key Recovery Attacks on ELmD Authenticated Encryption Algorithm
In this paper, we provide a security analysis of ELmD: a block cipher based Encrypt-Linear-mix-Decrypt authentication mode. As being one of the second-round CAESAR candidate, it is claimed to provide misuse resistant against forgeries and security against blockwise adaptive adversaries as well as 128-bit security against key recovery attacks. We scrutinize ElmD in such a way that we provide uni...
متن کاملCryptanalysis of some first round CAESAR candidates
ΑΕS _ CMCCv₁, ΑVΑLΑNCHEv₁, CLΟCv₁, and SILCv₁ are four candidates of the first round of CAESAR. CLΟCv₁ is presented in FSE 2014 and SILCv₁ is designed upon it with the aim of optimizing the hardware implementation cost. In this paper, structural weaknesses of these candidates are studied. We present distinguishing attacks against ΑES _ CMCCv₁ with the complexity of two queries and the success ...
متن کاملSAT-based cryptanalysis of ACORN
The CAESAR competition aims to provide a portfolio of authenticated encryption algorithms. SAT solvers represent powerful tools to verify automatically and efficiently (among others) the confidentiality and the authenticity of information claimed by cryptographic primitives. In this work, we study the security of the CAESAR candidate Acorn against a SAT-based cryptanalysis. We provide the first...
متن کاملIs AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?
AEZ is a parallelizable, AES-based authenticated encryption algorithm that is well suited for software implementations on processors equipped with the AES-NI instruction set. It aims at offering exceptionally strong security properties such as nonce and decryption-misuse resistance and optimal security given the selected ciphertext expansion. AEZ was submitted to the authenticated ciphers compe...
متن کاملQuantum Key-Recovery on Full AEZ
AEZ is an authenticated encryption algorithm, submitted to the CAESAR competition. It has been selected for the third round of the competition. While some classical analysis on the algorithm have been published, the cost of these attacks is beyond the security claimed by the designers. In this paper, we show that all the versions of AEZ are completely broken against a quantum adversary. For thi...
متن کامل